1 Title : Role of Glycinergic Inhibition in Shaping Activity of Saccadic Burst Neurons
نویسندگان
چکیده
The immediate premotor signals for saccades are created at the level of medium-lead burst neurons (MLBNs). During fixations, MLBNs receive tonic inhibition from omnipause neurons (OPNs), which use glycine as a neurotransmitter. To elucidate the role of this inhibition, we studied discharge patterns of horizontal MLBNs following iontophoretic application of strychnine, a glycine-receptor antagonist, in alert cats. Three-barrel micropipettes were used for extracellular recording and iontophoresis. After application of strychnine, MLBNs exhibited spontaneous discharge and visual responses during intersaccadic intervals. Spikes were evoked by single-pulse stimulation of the contralateral superior colliculus (SC). These results show that MLBNs receive substantial excitatory input during intersaccadic intervals and that inhibitory action of OPNs is indeed necessary to prevent MLBNs from firing. Strychnine also affected saccade-related activity of MLBNs. The burst of activity, as in normal conditions, declined rapidly before the end of saccades, but was followed by low rate spike activity, which continued beyond the end of saccades. This suggests that in normal conditions the termination of saccades is determined by resumed inhibitory action of OPNs and not by termination of excitatory input to MLBNs. In addition, the firing rate and the number of spikes during saccades increased after strychnine application, suggesting that MLBNs receive glycinergic inhibition of non-OPN origin as well. We conclude that glycinergic inhibition plays essential roles in the maintenance of stable fixation, the termination of saccades and the regulation of saccade size and velocity.
منابع مشابه
Role of glycinergic inhibition in shaping activity of saccadic burst neurons.
The immediate premotor signals for saccades are created at the level of medium-lead burst neurons (MLBNs). During fixations, MLBNs receive tonic inhibition from omnipause neurons (OPNs), which use glycine as a neurotransmitter. To elucidate the role of this inhibition, we studied discharge patterns of horizontal MLBNs following iontophoretic application of strychnine, a glycine-receptor antagon...
متن کاملSaccadic burst cell membrane dysfunction is responsible for saccadic oscillations.
Saccadic oscillations threaten clear vision by causing image motion on the retina. They are either purely horizontal (ocular flutter) or multidimensional (opsoclonus). We propose that ion channel dysfunction in the burst cell membrane is the underlying abnormality. We have tested this hypothesis by simulating a neuromimetic computational model of the burst neurons. This biologically realistic m...
متن کاملGlycinergic inhibition contributes to the generation of rostral scratch motor patterns in the turtle spinal cord.
Cutaneous stimulation within the rostral scratch receptive field in a low spinal-immobilized turtle elicits a fictive rostral scratch reflex characterized by robust rhythmic motor output from ipsilateral hindlimb muscle nerves and weaker, alternating motor discharge in contralateral nerves. Simultaneous bilateral stimulation elicits bilateral rostral scratch motor patterns in which activity on ...
متن کاملA new familial disease of saccadic oscillations and limb tremor provides clues to mechanisms of common tremor disorders.
Tremor disorders pose fundamental questions about disease mechanisms, and challenges to successful neurotherapeutics: What causes motor circuits to oscillate in disorders in which the central nervous system otherwise seems normal? How does inheritance 'determine' the clinical phenotype in familial tremor disorders? Here, we address these questions. Analogies between the neural circuits controll...
متن کاملSimulation of oculomotor post-inhibitory rebound burst firing using a Hodgkin-Huxley model of a neuron.
A number of theories have been reported on post saccade phenomenon describing dynamic overshoot, glissadic overshoot and undershoot, and undershoot, all naturally and frequently occurring saccadic eye movements. Electrophysiological evidence for post-inhibitory rebound burst firing activity during saccadic eye movements is prevalent in the literature. However, the cause for the phenomenon is no...
متن کامل